3.188 \(\int \frac{\cos ^4(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=108 \[ \frac{4 \cos (c+d x)}{a^2 d \sqrt{a \sin (c+d x)+a}}-\frac{4 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a \sin (c+d x)+a}}\right )}{a^{5/2} d}+\frac{2 \cos ^3(c+d x)}{3 a d (a \sin (c+d x)+a)^{3/2}} \]

[Out]

(-4*Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(a^(5/2)*d) + (2*Cos[c + d*x]^
3)/(3*a*d*(a + a*Sin[c + d*x])^(3/2)) + (4*Cos[c + d*x])/(a^2*d*Sqrt[a + a*Sin[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.144076, antiderivative size = 108, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {2679, 2649, 206} \[ \frac{4 \cos (c+d x)}{a^2 d \sqrt{a \sin (c+d x)+a}}-\frac{4 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a \sin (c+d x)+a}}\right )}{a^{5/2} d}+\frac{2 \cos ^3(c+d x)}{3 a d (a \sin (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^4/(a + a*Sin[c + d*x])^(5/2),x]

[Out]

(-4*Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(a^(5/2)*d) + (2*Cos[c + d*x]^
3)/(3*a*d*(a + a*Sin[c + d*x])^(3/2)) + (4*Cos[c + d*x])/(a^2*d*Sqrt[a + a*Sin[c + d*x]])

Rule 2679

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*(g*
Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + p)), x] + Dist[(g^2*(p - 1))/(a*(m + p)), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0]
&& LtQ[m, -1] && GtQ[p, 1] && (GtQ[m, -2] || EqQ[2*m + p + 1, 0] || (EqQ[m, -2] && IntegerQ[p])) && NeQ[m + p,
 0] && IntegersQ[2*m, 2*p]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cos ^4(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx &=\frac{2 \cos ^3(c+d x)}{3 a d (a+a \sin (c+d x))^{3/2}}+\frac{2 \int \frac{\cos ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx}{a}\\ &=\frac{2 \cos ^3(c+d x)}{3 a d (a+a \sin (c+d x))^{3/2}}+\frac{4 \cos (c+d x)}{a^2 d \sqrt{a+a \sin (c+d x)}}+\frac{4 \int \frac{1}{\sqrt{a+a \sin (c+d x)}} \, dx}{a^2}\\ &=\frac{2 \cos ^3(c+d x)}{3 a d (a+a \sin (c+d x))^{3/2}}+\frac{4 \cos (c+d x)}{a^2 d \sqrt{a+a \sin (c+d x)}}-\frac{8 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\frac{a \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{a^2 d}\\ &=-\frac{4 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a+a \sin (c+d x)}}\right )}{a^{5/2} d}+\frac{2 \cos ^3(c+d x)}{3 a d (a+a \sin (c+d x))^{3/2}}+\frac{4 \cos (c+d x)}{a^2 d \sqrt{a+a \sin (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.179209, size = 96, normalized size = 0.89 \[ -\frac{2 \cos (c+d x) \left (\sqrt{1-\sin (c+d x)} (\sin (c+d x)-7)+6 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{1-\sin (c+d x)}}{\sqrt{2}}\right )\right )}{3 a^2 d \sqrt{1-\sin (c+d x)} \sqrt{a (\sin (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^4/(a + a*Sin[c + d*x])^(5/2),x]

[Out]

(-2*Cos[c + d*x]*(6*Sqrt[2]*ArcTanh[Sqrt[1 - Sin[c + d*x]]/Sqrt[2]] + Sqrt[1 - Sin[c + d*x]]*(-7 + Sin[c + d*x
])))/(3*a^2*d*Sqrt[1 - Sin[c + d*x]]*Sqrt[a*(1 + Sin[c + d*x])])

________________________________________________________________________________________

Maple [A]  time = 0.15, size = 112, normalized size = 1. \begin{align*} -{\frac{2+2\,\sin \left ( dx+c \right ) }{3\,{a}^{4}\cos \left ( dx+c \right ) d}\sqrt{-a \left ( \sin \left ( dx+c \right ) -1 \right ) } \left ( 6\,{a}^{3/2}\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{a-a\sin \left ( dx+c \right ) }\sqrt{2}}{\sqrt{a}}} \right ) - \left ( a-a\sin \left ( dx+c \right ) \right ) ^{{\frac{3}{2}}}-6\,a\sqrt{a-a\sin \left ( dx+c \right ) } \right ){\frac{1}{\sqrt{a+a\sin \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4/(a+a*sin(d*x+c))^(5/2),x)

[Out]

-2/3*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(6*a^(3/2)*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^
(1/2))-(a-a*sin(d*x+c))^(3/2)-6*a*(a-a*sin(d*x+c))^(1/2))/a^4/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{4}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+a*sin(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^4/(a*sin(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [B]  time = 2.35373, size = 593, normalized size = 5.49 \begin{align*} \frac{2 \,{\left (\frac{3 \, \sqrt{2}{\left (a \cos \left (d x + c\right ) + a \sin \left (d x + c\right ) + a\right )} \log \left (-\frac{\cos \left (d x + c\right )^{2} -{\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) - \frac{2 \, \sqrt{2} \sqrt{a \sin \left (d x + c\right ) + a}{\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{\sqrt{a}} + 3 \, \cos \left (d x + c\right ) + 2}{\cos \left (d x + c\right )^{2} -{\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right )}{\sqrt{a}} -{\left (\cos \left (d x + c\right )^{2} +{\left (\cos \left (d x + c\right ) + 8\right )} \sin \left (d x + c\right ) - 7 \, \cos \left (d x + c\right ) - 8\right )} \sqrt{a \sin \left (d x + c\right ) + a}\right )}}{3 \,{\left (a^{3} d \cos \left (d x + c\right ) + a^{3} d \sin \left (d x + c\right ) + a^{3} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+a*sin(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

2/3*(3*sqrt(2)*(a*cos(d*x + c) + a*sin(d*x + c) + a)*log(-(cos(d*x + c)^2 - (cos(d*x + c) - 2)*sin(d*x + c) -
2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*(cos(d*x + c) - sin(d*x + c) + 1)/sqrt(a) + 3*cos(d*x + c) + 2)/(cos(d*x +
c)^2 - (cos(d*x + c) + 2)*sin(d*x + c) - cos(d*x + c) - 2))/sqrt(a) - (cos(d*x + c)^2 + (cos(d*x + c) + 8)*sin
(d*x + c) - 7*cos(d*x + c) - 8)*sqrt(a*sin(d*x + c) + a))/(a^3*d*cos(d*x + c) + a^3*d*sin(d*x + c) + a^3*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4/(a+a*sin(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 2.06983, size = 344, normalized size = 3.19 \begin{align*} -\frac{2 \,{\left (\frac{{\left ({\left (\frac{7 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )} - \frac{9}{a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \frac{9}{a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \frac{7}{a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a\right )}^{\frac{3}{2}}} + \frac{4 \, \sqrt{2}{\left (3 \, a \arctan \left (\frac{\sqrt{a}}{\sqrt{-a}}\right ) + 2 \, \sqrt{-a} \sqrt{a}\right )} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{\sqrt{-a} a^{3}} - \frac{12 \, \sqrt{2} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} + \sqrt{a}\right )}}{2 \, \sqrt{-a}}\right )}{\sqrt{-a} a^{2} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}\right )}}{3 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+a*sin(d*x+c))^(5/2),x, algorithm="giac")

[Out]

-2/3*((((7*tan(1/2*d*x + 1/2*c)/(a*sgn(tan(1/2*d*x + 1/2*c) + 1)) - 9/(a*sgn(tan(1/2*d*x + 1/2*c) + 1)))*tan(1
/2*d*x + 1/2*c) + 9/(a*sgn(tan(1/2*d*x + 1/2*c) + 1)))*tan(1/2*d*x + 1/2*c) - 7/(a*sgn(tan(1/2*d*x + 1/2*c) +
1)))/(a*tan(1/2*d*x + 1/2*c)^2 + a)^(3/2) + 4*sqrt(2)*(3*a*arctan(sqrt(a)/sqrt(-a)) + 2*sqrt(-a)*sqrt(a))*sgn(
tan(1/2*d*x + 1/2*c) + 1)/(sqrt(-a)*a^3) - 12*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt
(a*tan(1/2*d*x + 1/2*c)^2 + a) + sqrt(a))/sqrt(-a))/(sqrt(-a)*a^2*sgn(tan(1/2*d*x + 1/2*c) + 1)))/d